Onion-AE Foundations of Nested Encryption

Phillip Rogaway Yusi Zhang

University of California, Davis, USA

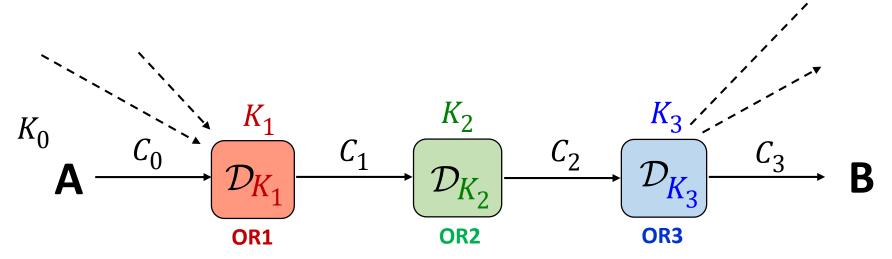
Privacy Enhancing Technologies Symposium (PETS 2018) Barcelona, Spain Thursday – 26 July 2018

Nested encryption as used for **onion routing**

[Goldschlag, Reed, Syverson 1996a, 1996b] [Syverson, Goldschlag, Reed 1997] [Dingledine, Mathewson, Syverson 2004]

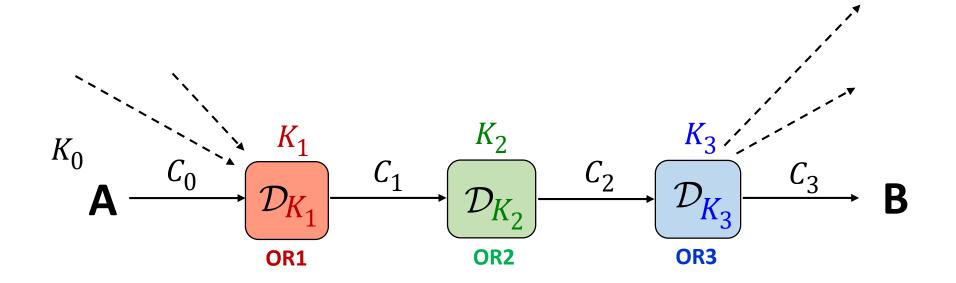
The symmetric, low-latency counterpart of **mixnets**

[Chaum 1981]



$$C_{0} = \mathcal{E}_{K_{1}} \left(\mathcal{E}_{K_{2}} \left(\mathcal{E}_{K_{3}} \left(M \right) \right) \right)$$
$$C_{1} = \mathcal{E}_{K_{2}} \left(\mathcal{E}_{K_{3}} \left(M \right) \right)$$
$$C_{2} = \mathcal{E}_{K_{3}} \left(M \right)$$
$$C_{3} = M$$

What problem does nested encryption supposedly solve?



$$C_{0} = \mathcal{E}_{K_{1}} \left(\mathcal{E}_{K_{2}} \left(\mathcal{E}_{K_{3}} \left(M \right) \right) \right)$$
$$C_{1} = \mathcal{E}_{K_{2}} \left(\mathcal{E}_{K_{3}} \left(M \right) \right)$$
$$C_{2} = \mathcal{E}_{K_{3}} \left(M \right)$$
$$C_{3} = M$$

What problem does nested encryption supposedly solve?

Concrete, self-contained, understandable.

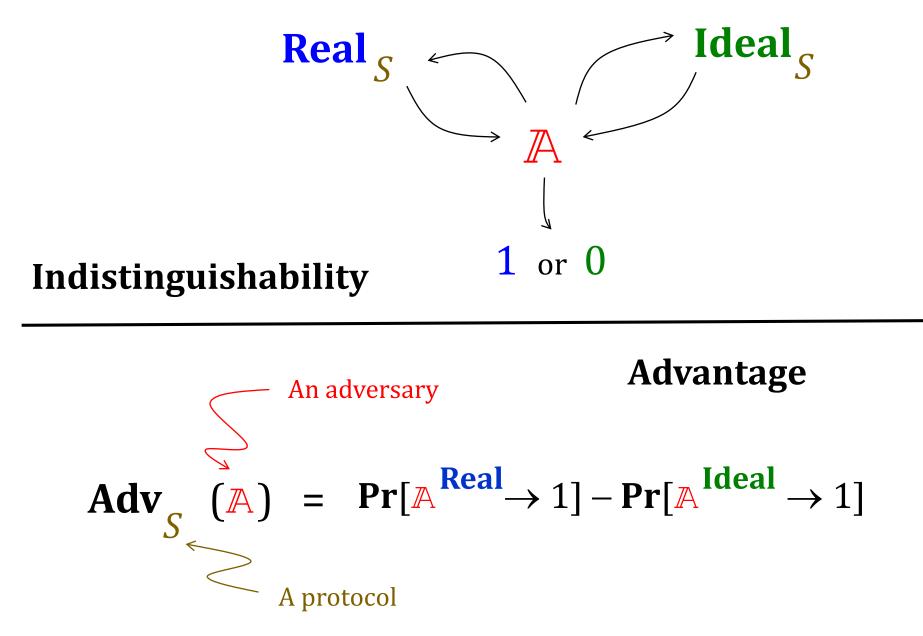
— Not building on UC [Canetti], [Camenisch, Lysyanskaya 2005]

A provable-security treatment of it

- Provide syntax and a definition
- Analyze constructions
 - Tor's relay protocol: doesn't satisfy our definition
 - LBE: does satisfy our definition

design 1 of proposal 202 of [Mathewson 2012]

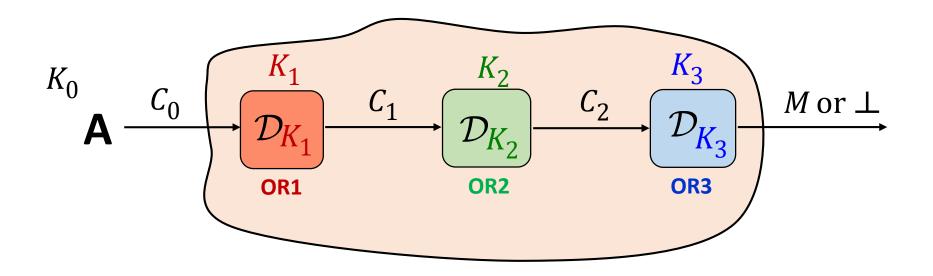
If the underlying blockcipher is a tweakable wideblock PRP



Seeing our problem as a type of Authenticated Encryption (AE)

"Onion-AE"

Symmetric encryption that aims to achieve both **privacy** and **authenticity**



Seeing our problem as a type of Authenticated Encryption (AE)

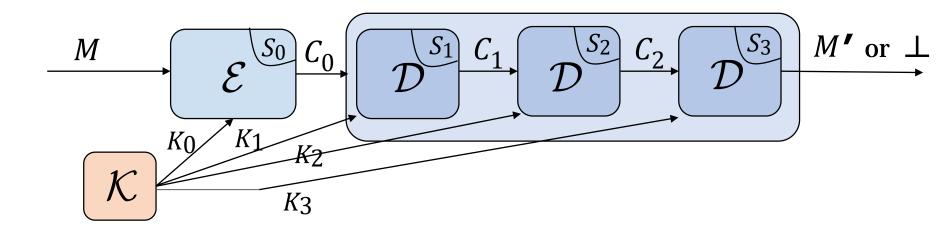
"Onion-AE"

Symmetric encryption that aims to achieve both **privacy** and **authenticity**

Lots of flavors of AE already:

- Probabilistic AE [Bellare, Rogaway 2000], [Katz, Yung 2000]
- Nonce-based AE [Rogaway, Bellare, Black, Krovetz 2001]
- Nonce-based AE with associated data (AEAD) [Rogaway 2002]
- Stateful AE [Bellare, Kohno, Namprempre 2004] ← Most closely related
- Misuse-Resistant AE [Rogaway, Shrimpton 2006]
- Release of Unverified Plaintext [Andreeva, Bogdanov, Luykx, Mennink, Mouha, Yasuda 2014]
- Robust AE [Hoang, Krovetz, Rogaway 2015]
- Online-AE [Hoang, Reyhanitabar, Rogaway, Vizár 2015]

Onion-AE syntax



A 3-tuple $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ where $\mathcal{K}: \mathbb{N} \to \mathcal{K}^*$ maps *n* to *n*+1 strings $\mathcal{E}: \mathcal{K} \times \mathcal{M} \times \mathcal{U} \to \mathcal{C} \times \mathcal{U}$ $\mathcal{D}: \mathcal{K} \times \mathcal{C} \times \mathcal{S} \to (\mathcal{M} \cup \mathcal{C} \cup \{\bot\}) \times \mathcal{S}$

Correctness



$$(\forall n) (K_0, K_1, ..., K_n) \leftarrow \mathcal{K}(n); (K_0, K_1, ..., K_n) \leftarrow \mathcal{K}(n)$$

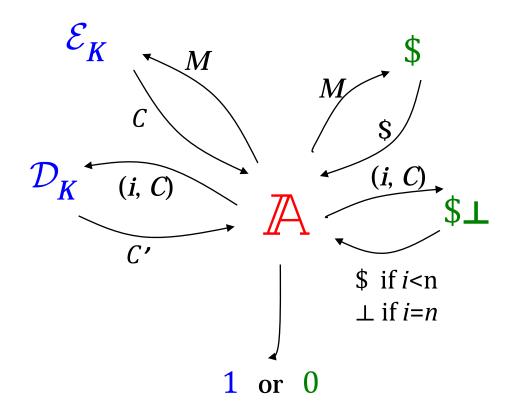
$$(\forall t) (M_1, ..., M_t) \leftarrow \mathcal{M}; S_0, S_1, ..., S_t \leftarrow \varepsilon$$

for $i \leftarrow 1$ to t do

$$(C_0, S_0) \leftarrow \mathcal{E} (K_i, M_i, S_0)$$

for $j \leftarrow 1$ to n do $(C_j, S_j) \leftarrow \mathcal{D} (K_j, C_{j-1}, S_j)$
assert $C_n = M_i$

Formalizing security

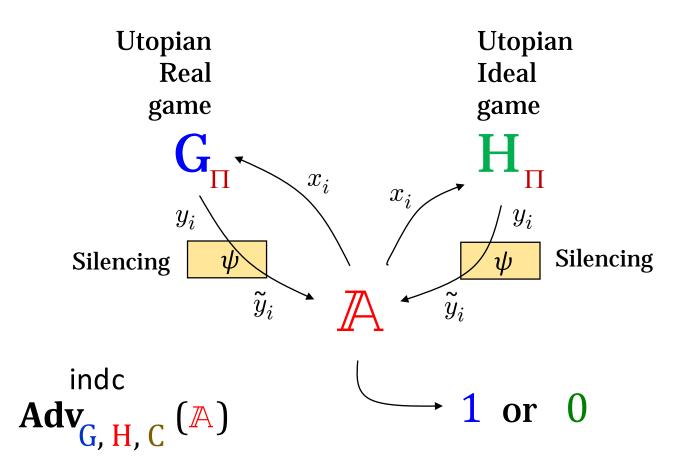


Oracle silencing:

behave like the **utopian** game shown **unless** the response you are about to give is **fixed** in every **correct** protocol. In that case, answer ♦ .

Idea explored in CRYPTO 2018 paper.

IND|**C** Indistinguishability up to correctness



Silence an oracle response if, for the real game, given the transcript *t* so far, the answer is fully determined by $\Pi \in C$.

$\operatorname{Key}(n')$

- 211 **if** $n \neq \perp$ **then return** Err 212 $n \leftarrow n'$ 213 $(k_0, \ldots, k_n) \leftarrow \mathcal{K}(n)$ ENC(m)
- 221 if $n = \bot$ then return Err 222 $(c, u) \leftarrow \mathcal{E}(k_0, m, u)$ 223 return c $\underline{\text{DEC}(c, i)}$ 231 if $n = \bot$ then return Err
- 232 $(d, s_i) \leftarrow \mathcal{D}(k_i, c, s_i)$

233 return d

$$\underline{\operatorname{Key}(n')}$$

- 311 if $n \neq \perp$ then return Err 312 $n \leftarrow n'$ $E_{NC}(m)$ 321 if $n = \perp$ then return Err $322 c \leftarrow C$ 323 return cDec(c,i)331 if $n = \perp$ then return Err 332 if i = n then $d \leftarrow \perp$ 333 else $d \leftarrow C$
- 334 return d

Without oracle silencing

Game TRANSMIT $_{OE}^{S}$	ENC(i,m)
$\varrho \leftarrow \varepsilon; n \leftarrow 0$	$(v,w) \leftarrow map(i,0)$
win \leftarrow false	\mathbf{m}_i .append (m)
${\cal S}^{ m Add, Enc, Pass}$	$(\boldsymbol{\sigma}_v[w], d, c) \leftarrow E(\boldsymbol{\sigma}_v[w], m)$
return win	if $d \neq \mathbf{p}_i[1]$
	win \leftarrow true
PASS(i, j)	else
$\mathbf{if} \neg (0 < j \le \ell_i) \lor Q_j^i = []$	$Q_1^i.enqueue(c)$
return 4	$\mathbf{return} (d, c)$
$c \leftarrow Q_j^i$.dequeue()	
$s \leftarrow \mathbf{p}_i[i-1]$	$ADD(\mathbf{p})$
$(v, w') \leftarrow map(i, j)$	if $ \mathbf{p} \ge 1$
$w \leftarrow D(\boldsymbol{\tau}_v, s, c)$	$n \leftarrow n+1$
if $w \neq w'$	$\mathbf{p}_n \leftarrow \mathbf{p}; \ell_n \leftarrow \mathbf{p} $
win \leftarrow true	$ctr_n \leftarrow 1$
$\mathbf{return} \perp$	$(\varrho, \sigma, \mathbf{t}, \overline{\mathbf{t}}) \leftarrow G(\varrho, \mathbf{p})$
$(\bar{\boldsymbol{\tau}}_v[w], d, x) \leftarrow \bar{D}(\bar{\boldsymbol{\tau}}_v[w], s, c)$	$\mathbf{if} \left \mathbf{t} \right \neq \ell_n \vee \left \bar{\mathbf{t}} \right \neq \ell_n$
if $j < \ell_i \land d = \mathbf{p}_i[j+1]$	$win \gets true$
Q_{i+1}^{i} .enqueue (x)	${m \sigma}_{{f p}[0]}.{f append}(\sigma)$
elseif $j = \ell_i \wedge d = \oslash \wedge x = \mathbf{m}_i[ctr_i]$	for $j = 1$ to ℓ_n
$\operatorname{ctr}_i \leftarrow \operatorname{ctr}_i + 1$	$v \leftarrow \mathbf{p}[j]$
else win \leftarrow true	$oldsymbol{ au}_v.append(\mathbf{t}[j])$
return (d, x)	$ar{m{ au}}_v.append(ar{\mathbf{t}}[j])$
	$\mathbf{return} \ n$

Concurrent work [Degabriele, Stam 2018] Untagging Tor: A Formal Treatment of **Onion Encryption**

$\operatorname{Game}\operatorname{PINT}_{OE}^{\mathcal{A}}$	Enc(i,m)
$\varrho \leftarrow \varepsilon; n \leftarrow 0$	$(v,w) \gets map(i,0)$
win \leftarrow false	if $v \in C$
$(\mathcal{C},st) \leftarrow \mathcal{A}_1$	return ‡
$\mathcal{A}_{2}^{\text{ADD,ENC,PROC}}(\text{st})$	\mathbf{m}_i .append (m)
return win	$(\boldsymbol{\sigma}_v[w], d, c) \leftarrow E(\boldsymbol{\sigma}_v[w], m)$ return (d, c)
$ADD(\mathbf{p})$	PROC(s, v, c)
if $ \mathbf{p} \ge 1$	if $v \in C$
$n \leftarrow n + 1$	return 4
$\mathbf{p}_n \leftarrow \mathbf{p}; \ \ell_n \leftarrow \mathbf{p} $	$w \leftarrow D(oldsymbol{\tau}_v, s, c)$
$ctr_n \leftarrow 1; sync_n \leftarrow true$	if $w = \perp$
$(\varrho, \sigma, \mathbf{t}, \bar{\mathbf{t}}) \leftarrow G(\varrho, \mathbf{p})$	return ⊥
$\sigma_{\mathbf{p}[0]}$.append (σ)	$(i,j) \leftarrow map^{-1}(v,w)$
for $j = 1$ to ℓ_n	$(\bar{\boldsymbol{\tau}}_v[w], d, x) \leftarrow \tilde{D}(\bar{\boldsymbol{\tau}}_v[w], s, c)$
$v \leftarrow \mathbf{p}[j]$	if $d = \oslash \land x \neq \bot$
$\tau_{v}.append(\mathbf{t}[j])$	if $j = \ell_i \wedge x = \mathbf{m}_i[ctr_i]$
$ar{m{ au}}_{v}.append(ar{\mathbf{t}}[j])$	$ctr_i \leftarrow ctr_i + 1$
return $(\sigma, \mathbf{t}, \bar{\mathbf{t}}) _{\mathcal{C}}$	else
	win ← true
	$\mathbf{return}\ (d,x)$

Without oracle silencing

 $(\mathcal{W}_{u}, \mathcal{W}_{1}, \mathcal{C}, st) \leftarrow \mathcal{A}_{1}$ if $\rightarrow VALID(W_0, W_1, C)$ return false ∀i sync, ← true $\rho \leftarrow \varepsilon; n \leftarrow 0; b \leftarrow i \{0, 1\}$ INIT-CIRC(Wh) $\tau_{\mathcal{C}} \leftarrow \{(v, \sigma_v, \tau_v, \bar{\tau}_v) | v \in \mathcal{C}\}$ $b' \leftarrow \mathcal{A}_{a}^{Enc,Net}(st, \tau_{c})$ return b = b'NET(z) $\forall i assc_i \leftarrow 0; x \leftarrow []$ for i' = 1 to |z| $(s, v, c) \leftarrow \mathbf{z}[i']$ $w \leftarrow \mathsf{D}(\tau_x, s, c)$ if s ¢ C V v ∈ C V w = ⊥ return f for $\vec{i} = 1$ to $|\mathbf{z}|$ $(s,v,c) \leftarrow \mathbf{z}[i']; c^* \leftarrow c$ $w \leftarrow \mathsf{D}(\tau_{s}, s, c)$ $(\bar{\tau}_u[w], d, c) \leftarrow \bar{\mathsf{D}}(\bar{\tau}_u[w], s, c)$ $(i, j) \leftarrow map(v, w)$ while $d \notin C \land d \neq \emptyset$ $s \leftarrow v; v \leftarrow d$ $w \leftarrow D(\tau_s, s, c)$ $(\bar{\tau}_s | w |, d, c) \leftarrow \hat{\mathsf{D}}(\bar{\tau}_s | w |, s, c)$ if d e C $x_{append}(v, d, c)$ if d C V i C Inne assc, +- assc, +1 if $c^* \neq Q^i$.dequeue() sync, - false if \bigvee (sync, \lor assc, \neq 1) 46 Int return j return sort(x)

Game C-HIDE

INIT-CIRC(W) for i = 1 to |W| $n \leftarrow n + 1$; $\mathbf{p}_n \leftarrow \mathcal{W}[i]$ $(\varrho, \sigma, t, t) \leftarrow G(\varrho, \mathbf{p}_n)$ $\ell_n \leftarrow |\mathbf{p}_n|$ sync., - true $\sigma_{p_{n}}$ ini_append(σ) for j = 1 to ℓ_n $v \leftarrow \mathbf{p}_n[j]$ $\tau_{v}.append(t[j])$ $\bar{\tau}_{e}$.append($\bar{\mathbf{t}}[j]$) if $EN(\mathbf{p}_n, \mathcal{C}) \wedge \mathbf{p}_n[0] \notin \mathcal{C}$ $I_{in} \leftarrow I_{in} \cup \{i\}$ if NOP(p.,C) $I_{nisp} \leftarrow I_{nisp} \cup \{i\}$ foreach v Shuffle($\sigma_{v}, \tau_{v}, \bar{\tau}_{v}$) ENC(i, m) $(v, w) \leftarrow map(i, 0)$ if $v \in C$ return § $(\sigma_v[w], d, c) \leftarrow \mathsf{E}(\sigma_v[w], m)$ while $d \notin C$ $s \leftarrow v; v \leftarrow d$ $w \leftarrow \mathsf{D}(\tau_v, s, c)$ $(\bar{\tau}_{v}[w], d, c) \leftarrow \tilde{\mathsf{D}}(\bar{\tau}_{v}[w], s, c)$ $(v^*, d^*, c^*) \leftarrow (v, d, c)$ while $d \in C$ $s \leftarrow v; v \leftarrow d$ $w \leftarrow D(\tau_{v}, s, c)$ $(\bar{\tau}_v [w], d, c) \leftarrow \tilde{\mathsf{D}}(\bar{\tau}_v [w], s, c)$ if d = 3 $(i, j) \leftarrow map^{-1}(v, w)$ Q^{i} .enqueue(c)

return (v*, d*, c*)

Concurrent work [Degabriele, Stam 2018] Untagging Tor: A Formal Treatment of Onion Encryption

$$\label{eq:Game LOR} \begin{split} & \overbrace{\substack{\varrho \leftarrow \varepsilon; \ n \leftarrow 0 \\ \text{win} \leftarrow \text{false} \\ b \leftarrow \mathfrak{s} \ \{0,1\} \\ (\mathcal{C}, \text{st}) \leftarrow \mathcal{A}_1 \\ b' \leftarrow \mathcal{A}_2^{\text{ADD, ENC, PROC}}(\text{st}) \\ & \textbf{return} \ b = b' \\ \end{split}$$
 $\begin{array}{l} & \underbrace{\text{ENC}(i, m_0, m_1) \\ (v, w) \leftarrow \text{map}(i, 0) \\ & \textbf{if} \ v \in \mathcal{C} \lor \mathbf{p}_i[\ell_i] \in \mathcal{C} \lor |m_0| \neq |m_1| \\ & \textbf{return} \ \frac{\ell}{2} \end{split}$

 $\mathbf{m}_i.\mathsf{append}(m_b)$ $(\boldsymbol{\sigma}_v[w], d, c) \leftarrow \mathsf{E}(\boldsymbol{\sigma}_v[w], m_b)$ return (d, c) $\begin{array}{l} \hline & \underline{\operatorname{PROC}(s,v,c)} \\ \hline \mathbf{if} \ v \in \mathcal{C} \\ \mathbf{return} \ \underline{i} \\ w \leftarrow \mathsf{D}(\boldsymbol{\tau}_v,s,c) \\ \mathbf{if} \ w = \bot \\ \mathbf{return} \ \bot \\ (i,j) \leftarrow \mathsf{map}^{-1}(v,w) \\ (\bar{\boldsymbol{\tau}}_v[w],d,x) \leftarrow \bar{\mathsf{D}}(\bar{\boldsymbol{\tau}}_v[w],s,c) \\ \mathbf{if} \ j = \ell_i \wedge d = \oslash \\ \mathbf{if} \ c = \mathbf{m}_i[\mathsf{ctr}_i] \wedge \mathsf{sync}_i = \mathsf{true} \\ \mathsf{ctr}_i \leftarrow \mathsf{ctr}_i + 1 \\ \mathbf{return} \ \underline{i} \\ \mathbf{else} \\ \mathsf{sync}_i \leftarrow \mathsf{false} \\ \mathbf{return} \ (d,x) \end{array}$

Limitations on this treatment of onion-AE

- Only attended to **outbound** messages
- No corrupted routers
- Fixed sequence of hops: **no "leaky pipe"**
- Authenticity checked only at time of exit.
 "Lazy authenticity"

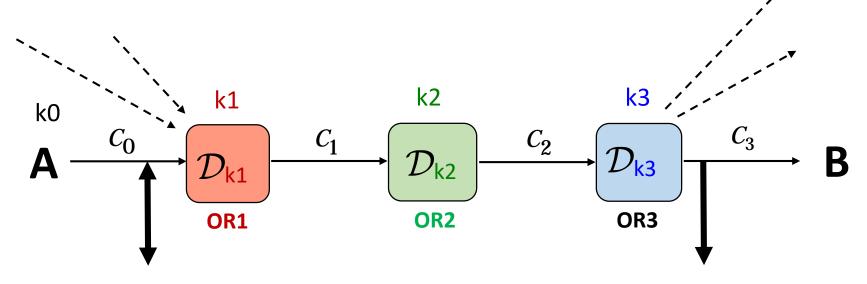
Alternative: "Eager authenticity" might be preferred. Relaxations sketched in the paper

Tagging attacks

[Goldschlag, Reed, Syverson 1996] [Dingledine, Mathewson, Syverson 2004] [Fu, Ling 2009] [Racoon23 2012]

Confirmation attacks that a particular flow into an entry node leaves at some particular exit node, based on the **malleability** of the encryption

[Dolev, Dwork, Naor 1991], [Bellare, Desai, Pointcheval, Rogaway 1998]



A exploits malleability of encryption scheme to *tag* a ciphertext, e.g., xor'ing it with some constant Δ

A detects the mauled ciphertext, confirming the originator of this flow.

Excluded because $AE \Rightarrow$ nonmalleability \Rightarrow no tagging attacks

LBE is onion-AE secure

 \approx Mathewson's Proposal 202 (Design 1, Large Block Encryption), 2012. Proposal 261 is 202 with AEZ

$$C_0 = \mathbb{E}_{K_1}^{\mathbf{c_1}\text{-hist}} \left(\mathbb{E}_{K_2}^{\mathbf{c_2}\text{-hist}} \left(\mathbb{E}_{K_3}^{\mathbf{c_3}\text{-hist}} \left(M \mid \mid \mathbf{0} \right) \right) \right)$$

E a **wideblock TBC**, eg **AEZ, EME2, Farfalle, HHFHFH**

Theorem [informal]: From an adversary \mathbb{A} that attacks LBE[\mathbb{E}] we construct an adversary \mathbb{B} that breaks \mathbb{E} as a PRP with comparable resources and advantage.

Final remarks

Two major definitional variants for onion-AE, **eager** and **lazy** authenticity. Both can be defined with oracle silencing. Which notion is desired?

[Proposal 295: Tomer Ashur, Orr Dunkelman, Atul Lyukx 2018]. Onion-AE secure??

Does any of this matter for Tor? I don't know. But it's best when we build our protocols out of primitives that achieve strong, formalized security definitions.